最終更新日  2017.09.01.

日本語

Publicationhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_4_link_0
Protocol../protocol_iweb/protocol.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_5_link_0
Members../members_iweb/members_2.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_6_link_0
Project../project_iweb/project%E3%80%80abstract.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_7_link_0
Top../Top_iweb/Welcome.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_8_link_0
Photo../Photogallery_iweb/Photogallery.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_9_link_0
Link../link_iweb/link.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_10_link_0
Access../access_iweb/access.htmlhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmedshapeimage_11_link_0
 


Freyer L, Hsu CW, Nowotschin S, Pauli A, Ishida J, Kuba K, Fukamizu A, Schier AF, Hoodless PA, Dickinson ME, Hadjantonakis AK.

Loss of apela peptide in mice causes low penetrance embryonic lethality and defects in early mesodermal derivatives.

Cell Rep. 20, 2116-2130 (2017) doi: 10.1016/j.celrep.2017.08.014.


Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M.

Erratum: Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.

Nat Neurosci. 20, 896. (2017)  doi: 10.1038/nn0617-896b.


Nezu M, Souma T, Yu L, Sekine H, Takahashi N, Wei AZ, Ito S, Fukamizu A, Zsengeller ZK, Nakamura T, Hozawa A, Karumanchi SA, Suzuki N, and Yamamoto M.

Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes.

Science Signal. 10, eaam5711 (2017) doi: 10.1126/scisignal.aam5711.


Sato T, Sato C, Kadowaki A, Watanabe H, Ho L, Ishida J, Yamaguchi T, Kimura A, Fukamizu A, Penninger JM, Reversade B, Ito H, Imai Y, and Kuba K.

ELABELA - APJ axis protects from pressure overload heart failure and Angiotensin II-induced cardiac damage.

Cardiovasc. Res. 113, 760-769 (2017) doi: 10.1093/cvr/cvx061.


Yagishita Y, Uruno A, Fukutomi T, Saito R, Saigusa D, Pi J, Fukamizu A, Sugiyama F, Takahashi S, and Yamamoto M.

Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress.

Cell Rep. 18, 2030-2044 (2017) doi: 10.1016/j.celrep.2017.01.064.


Kanou A, Kako K, Hirota K, and Fukamizu A.

PRMT-5 converts monomethylarginines into symmetrical dimethylarginines in Caenorhabditis elegans.

J. Biochem. 161, 231-235 (2017) doi: 10.1093/jb/mvw066


Hirota K, Shigekawa C, Araoi S, Sha L, Inagawa T, Kanou A, Kako K, Daitoku H, and Fukamizu A.

Simultaneous ablation of prmt-1 and prmt-5 abolishes asymmetric and symmetric arginine dimethylations in Caenorhabditis elegans.

J. Biochem. 161, 521-527 (2017) doi: 10.1093/jb/mvw101.


Taniguchi H, Okamuro S, Kohji M, Waku T, Hatanaka A, Sun Y, Chowdhury A, Fukamizu A, and Kobayashi A.
Possible roles of the transcription factor Nrf1 (NFE2L1) in neural homeostasis by regulating the gene expression of deubiquitinating enzymes.
Biochem. Biophys. Res. Commun. 484, 176-183 (2017) doi: 10.1016/j.bbrc.2017.01.038


Kawasaki S, Kako K, Nagashima Y, Kanou A, Ishida J, and Fukamizu A.

Hydralazine is involved in tele-methylhistamine metabolism by inhibiting monoamine oxidase B in pregnancy-associated hypertensive mice.

J. Biochem. 161, 155-158 (2017) doi: https://doi.org/10.1093/jb/mvw090


Ishimaru T, Ishida J, Kim JD, Mizukami H, Hara K, Hashimoto M, Yagami KI, Sugiyama F, and Fukamizu A.

Angiodysplasia in embryo lacking protein arginine methyltransferase 1 (PRMT1) in vascular endothelial cells.

J. Biochem. 161, 255-258 (2017) doi: https://doi.org/10.1093/jb/mvw095


Sha L, Daitoku H, Araoi S, Kaneko Y, Takahashi Y, Kako K, and Fukamizu A.

Asymmetric arginine dimethylation modulates mitochondrial energy metabolism and homeostasis in Caenorhabditis elegans.

Mol. Cell. Biol. 37, e00504-16 (2017) doi: 10.1128/MCB.00504-16


Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, and Noda M.

Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ.

Nature Neurosci. 20, 230-241 (2017) doi: 10.1038/nn.4463

2009publication_2009.htmlshapeimage_13_link_0
2012publication_2012.htmlshapeimage_14_link_0
2010publication_2010.htmlshapeimage_15_link_0
2011publication_2011.htmlshapeimage_16_link_0
2008publication_2008.htmlshapeimage_17_link_0
2007publication_2007.htmlshapeimage_18_link_0
2006publication_2006.htmlshapeimage_19_link_0
2005publication_2005.htmlshapeimage_20_link_0
2004publication_2004.htmlshapeimage_21_link_0
2003publication_2003.htmlshapeimage_22_link_0
2002publication_2002.htmlshapeimage_23_link_0
2001publication_2001.htmlshapeimage_24_link_0
2000publication_2000.htmlshapeimage_25_link_0
1999publication_1999.htmlshapeimage_26_link_0
1998publication_1998.htmlshapeimage_27_link_0
1997publication_1997.htmlshapeimage_28_link_0
1996publication_1996.htmlshapeimage_29_link_0
1995publication_1995.htmlshapeimage_30_link_0
1994publication_1994.htmlshapeimage_31_link_0
2013publication_2013.htmlshapeimage_32_link_0

Last updated on 170901

2014publication_2014.htmlshapeimage_33_link_0
2015publication_2015.htmlshapeimage_34_link_0
2016publication_2016.htmlshapeimage_35_link_0
2017shapeimage_36_link_0